Towards real-time finite element simulation on GPU
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In this paper, we introduce a parallel assembly tdmique on NVIDIA CUDA GPUs for finite element metha (FEM) applied
in the magnetic field computation. Basically, eachthread calculates the integration associated with ra element. To avoid
memory conflicts, we introduced a fast procedure beed on sorting and rearrangement of elementary nomero (NZ) entries.
Finally, a reducing process is executed to assemB in the stiffness matrix. This algorithm does notrequire any preprocessing
on mesh but also take advantage of parallel compuiy power of GPU. In our tests, using this paralleassembly improved the
speed assembling up to 20x times faster.
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There are a lot of proposed strategies for GPUnalsiye

[. INTRODUCTION mesh coloring to partition elements into non-ovgpiag

The finite element method is a well-used numericai€ts [4], graph partitioning and reduction lisgdbmatrices
technique for finding approximate solutions in thd3l: @ssembly by NZ using global, local, shared rognj1],

electromagnetic computation field. We considergttablem Patching mesh [2]. These approaches generally ssepeof
of finding a functioru: Q—R that satisfies: pre-computing or reorganization of the nodes ardnehts

Lw)=f (1) of the mesh. Consequt_—antly, this affects the (_)verall
in the domainQ with some boundary conditions on theP€rformance. Our alternative method does not recaiy
boundarypQ. In which,Q is the spatial n-dimension domainPreprocessing on mesh but uses a sorting methddZxy
R", £ is a general linear differential operatéiis a source Index of rows for separating parallel threads.
term. The FEM begins by the subdivision of dom@iinto

a set of finite elements and defines an approxirhatetion, IIl. ASSEMBLY PARALLEL ON GPU

note u, based on the nodal variablgsassociated with\, In this paragraph, we illustrate the assembly étligar of
N, stiffness matrix A in the proposed diagram below:
geometric nodesl = U = Z h (X)u; Node_coordinates  F=———TF—F——TH} 1 !
=1 [N] nodes H 4 2
hi(xX) denoting spatial distributions associated with the
approximation valug; on " node. INTEGRATION
Equation (1) is transformed by FEM into a lineasteyn =~ § BYELEMENT
of equations such as: Eﬁ”}l‘::g::’:tg Mesh) A
Au=F 2
A is the stiffness matrixE is the forcing vectory is the e
approximation vector of unknown nodal variables. COO_A_colind
The objective of this work is to push computation o g\léz)iﬂ:]_values

[Ne * ne’]

GPU as far as possible in the pursuit of “pseudd-tiene” | CORTING BY INDEX OF ROW

simulation goal. In this paper, we will concentrate the
assembly process. In the full paper, solving preced be
equally presented.
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Il. GENERAL CONSIDERATIONON ASSEMBLY REDUCING
BY ROW

In practice, each entry fof the matrixA is assembled iCSR_A_mwpn
[Naor + 1]

from contributions of all elements that containtbnbdesy; CSR_A collnd
and y; and similarly each entri; of the vectorF is ek values
assembled from all elements that contain NNz
- e . = e Fig.1. The global assembly algorithm uses 3 ker@el®A: integration by
A{Li] Z Al F[i] Z F K] element, sorting by the index of rows, reducing.

ek, ek

E(ek)=i E(ek)=i . _ .

E(el)=] First, in step “a”, we assign each parallel thread

A® andF® are the elementary matrix and vector based a@ompute the integration of each element. The resafe
the integration of operataf and functionf in the space of saved into a temporary matix described in the coordinate
element.E is the element connectivity data, for instance(COO) format [8] with 3 arrays: its row index, cola index
E(e,k) corresponds td"iglobal degree of freedom (DOF) and value. The integration by element is straightéod and
that associates with the™ knode of & element. The matrix ensures load balancing between parallel threadsveSkept
A is usually sparse with a few non-zero entriegach row. the original code and only changed the way to acces

database that are handled on global memory of @ht¢e



the mesh is unstructured, the coalesced readinglayal NVIDIA Tesla C1060 240 cores CUDA 1.3 GHz. The
memory [9] is impossible if not arrangement theatlase. original code of FEM on CPU is developed in JAVA 47
However, the matriXA is saved on the global memory by aenvironment. Therefore, the parallel code of theeatbly
coalesced way. With a mesh of Mlements andjnDOFs by CUDA GPUs is ported into JAVA by jCuda. The
associated per element, so the dimension of ay afr& is  databases on the GPUs memory are saved in sirggesion
(Ne * ndd). (32 bit) to adapt to maximal performance of GPUs The
Next, in step “b”, we use a parallel sorting metHfod results of stiffness matrid and vectorF are compared
rearranging NZ entries by its row index. In genethe between CPU and GPU program for checking the
sorting implementation is suitable on GPU and tteme a correctness with the relative norm of differenceatt 0°.
lot of effective sorting methods proposed in theréture. In TABLE |
our test, we used the radix sorting algorithm ia @udpp THE'NFORMAETL"EDES\‘FT’!iﬁlgEﬁmgzggmﬁRzgﬁggNUMBER OF
library [6] coded by jCuda [7]. As a result, the NAtries

with same index of row are saved adjacently omteenory Mesh Nbor Ne NNz
that facilitates the coalescent access in the next. Oven_1 6,792 13,608 47,132
In step “c”, each parallel thread is assigned toneanory Oven_2 23,373 46,762 162,917
segment that corresponds to a row and performsliireg Actuator 1 11,211 22,580 78,151
process if NZ entries of that row have the samendf Actuator_2 32,945 65,984 230,425
column. In this step, the share memory on GPU ifatgls Actuator_3 61,617 123,392 430,993

the fast accessing on the data and improves thectied. The comparison of running times on CPU and GPU is
Finally, we obtain the stiffness matrik described in the shown in therasLe Il

Compressed Row Storage (CRS) format [9] by 3 arrays TABLE Il
pointer, column index and values. The vector Foimputed ASSEMBLY PERFORMANCE IN MILLISECOND
by a similar way. Mesh GPU CPU Speed up
Oven_1 15 172 11.47
IV. TEST Oven_2 45 1,021 22.69
We perform some tests in the linear static magriigtids Actuator_1 31 483 15.58
[5] in which the equations are written as: Actuator_2 a7 1,014 2157
OxH=J, Actuator_3 109 1,872 17.17
0.B=0
HoH in air ) V. CONCLUSION
T in magnetically linear material Our method improves the speed assembly FEM method

and is suitable not only for the electromagnetaldfi but

The geometries and physical properties are destiibéhe s :
also for many other fields. The advantages of éilsisembly

Fig.2 and Fig.3 below:
20

0140 algorithm are the load balancing, the suitable
go ElZZ implementation of sorting and the scalability. Ginawback
: /] is the large requirement of GPU global memory. On
§ [ Ry perspective, the mesh can be divided into sub-ntesh
_EAN 38 partially perform the assembly in the shared memamy
'; | GPU. Considering the solving process, the workhi full
/ 7 paper shows equivalent speed up result.
1 T /’
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